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The framework of the plane theory of elasticity is used to investigate the 
equilibrium of an infinite wedge enveloping a half-space and containing an 
internal, semi-infinite crack extending along the continuation of one of its 
faces. The faces of the wedge and the edges of the crack are stress-free. The 
stresses tend to zero at infinity, but their principal vector and principal mom- 
ent are different from zero and specified by the condition. An exact solution 
of the homogeneous, Wiener - Hopf vector equation of the problem in ques- 
tion is constructed, the stress intensity factors at the crack edge are calculat- 

ed and the asymptotic expressions for the stresses near the wedge edge given. 

l. F o r m u 1 a t i o II o f t h e p r o b 1 e m, Let an infinite elastic wedge 
with the opening angle greater than n, contain a crack at y = 0, x > 1 (Fig. 1). 

Fig. 1 Fig. 2 

The wedge faces and crack edges are stress-free. The stresses tend to zero at infinity, 
but their principal vector and principal moment are different from zero and equal to 

(X, Y) and M respectively. If follows that the neck Y = 0, 0 < x < 1 

between the wedge 0 < 8 ( a and the half-space - rc ( 0 ( 0 transmits 
the given force and moment 

So&O]& = Y, &r&O)& = x 
0 0 

1 

s 
(~8 (r, 0) rdr = M 

0 

Let us write ihe boundary conditions and conditions at the singular 
homogeneous singular problem of the theory of elasticity in question: 
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point of the 
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=o (O<a<n) 
0 = -n, u’8 = T,e = 0 
8 = 0, beI = h,el = 0 
8 = 0, r > 1, cre = z,e = 0 
8=0, r<l, [u~l=[u,l=O 

&Le L-II w 6=0 - 
2(1-Y2) x 

E 
nsinzaX--[[a(n+a)+sina(ncosa-sina)]Y 

it (aa - sina a) X 

4(1-vz) (n+a)cosa-sina M 
7?i_+ E JI (sin a - a co9 a) rS 8% L II 2 
W e=0 

_ 2(1 -v2) x 
E 

[sinh(ncosa-/-sina)-a((n:+a)]x+nsinaaY 
n (aa - sina a) X 

1 4 (I - v2) sin a -- 
r* E’ sin a - a cos a $4 r--+00) 

a*ue I-II 2 (1 - v2) 
ar= - - e=o E 1/&p (r41+ O) 

[ II a2up 2 (I- v2) KII 

8r2 e=o-- E JG (r - 1yir 

KI KlI 
OeW)- l/2n(1_r) 7 ~te(I*,O)- v2n(i_rr) b-h--, -0) 

ue (r, 0) -4 (4 AZ (4 
_,I--R1’ Tre (r, 0) - - +--hl (r--+O,O<af2a,-n) 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

rre (r, 0) -*+* (r-+0,2a,-n<u<n) 

Here oe7 ‘Q, or denote the stresses; r&J and U, are the displacements; [IV] 
denotes the jump in the value of iv; E is the Young’s modulus; v is the Poisson’s 
ratio; Kr and Krr are the stress intensity factors at the crack edge; hl (a) (flj < 
a < n; j = 1, 2) denotes the single-valued root of the equation sin p (n + a)- 
(-lfp sin (n + a) = 0 (p is a complex number) in the strip 0 < Re p < 

1 (1/z < hj< 1); p1 = 0, Bz = 2a* - 
n; a* is the single-valued root of the 

equation 
2x COS 2x- sin 2x = 0 (II / 2 <x(n) 

-4, (a) and Bj (a) are unknown quantitites and 2a, z 257". 
Conditions (1.2) - (1.4) were formulated using the general assumptions concem- 

ing the singular problems of the theory of elasticity (see [l], pp. 51-63). 

2, Solution of the Wiener-Hopf vector equation. 
Applying the MeUn transformation to the equations of equilibrium, the conditions of 
compatibility of deformations, the Hooke’s Law relations and to the conditions (1. I), 
we arrive at the following homogeneous, two-dimensional functional Wiener - Hopf 
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vector equation: 
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V+(P) = (P + ~)ctgp~G(p)~-(p) fb---Rep <O) 

G(P) = 
b(p)+ctp)l ctP)mtP) 

c (P) n (P) b(P) - C(P)l 

(2.1) 

b(P)= -+[ 
si~p~sin~c~~ _ 1 

co9 p (p sins u - sin2 pa) 1 

C(P) = - 
p sin pn sin a 

2 co5 pc (@sins a - sin2 pa) 
m(p)=(p-l)sincz, n(p)=-@+I) sina, I=coSa 

f (p) = 12 + mn = 1 - p2 sine a 

‘p+ (P) = m+ (p), @z+ (P)), cp- (P) = (@l- (Ph @2- (P)) 

CD,_(p) = f ITTO (r, 0) rMr 
0 

The vector fi_mction ?- @) IS analytic in the half-space Re p > - h, and 
‘p+ (p) is analytic in the half-space Re p ( 0, and 

@a+ (--I) = 0 (2*2) 

Let us consider, in the complex p -plane, the contour L consisting of the im- 
aginary axis except a small segment symmetrical about the coordinate origin, and 
the left half of a circle of small radius with the center at the coordinate origin(Fig. 2). 

We denote the regions to the left and right of the contour by II+ and ZI- respective- 

lY* 
It can be shown that the matrix G (p) satisfies the conditions (formulated in 

[2] ) sufficient for representing this matrix on the contour .L in the form 

G (P) = X+ (PNX- (P)J-’ (P E L) (2.3) 

x @) = { 

x+ (P), PED+ 

X-(p), pczD- 

where (h, (p), ha (p) are the eigenvalnes of the matrix G (p) and I is a unit 
matrix. From (2.3) we find 
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X (P) - 0, P --, 00 

Q = u:;;; - sinqi, q= +I /$;frnaa 
cos q 

[X_(O)]_’ = 

(2aA)-’ I 

a2+1-((a2--1)cosa (a’--1)sina 

(us _ 1) sin a a2+1 +(a”-l)coscl I 

(2.4) 

C (a - sin a)@ .t a + sin a) ‘14 4 (a2 - sida) ‘14 
a= 

(a + sin a)(n + a -sin a) 1 
, A= 

c (n + a)2 - sin2 a 1 

u chs-shs 0 
fx-(1)1-l = F-’ 2tgashs chs + shs II 

m 
cosa ’ 

sz -- 
E (if) dt 

x s o (t2+ 1) 1/i + Fsinsa ’ 

(u In A (it) dt F= ex+&S 
ta + 1 1 

u 
Taking into account the factorization of (2.3) and the known representation [3] 

p ctg pn = K+(p) K-(p), K’ (P) = 1$:1:,2g) 

where r (z) is the Euler gamma function, we can rewrite (2.1) thus: 

;[~+$V LX+ (PVcp+ (P) = (P -t l)K_ (p)[X- (p)l-‘cp- (p) (2.5) 

The vector function appearing in the left hand side of (2.5) is analytic in D + 
and the vector function in the right hand side is analytic in D-. Therefore they 
are both equal to a single vector function analytic over the whole p -plane. 
Let us find this single analytic function. Using (1.3) and letting p , obtain 

cp+ (P) - pP)“Zv, 9_(p) - (2p)-‘h, (2.6) 

and the properties of function K* follows 
p -+ 00 , the left and right hand sides of (2.5) behave as 2-‘l~Q_lvp . Con- 

sequently, the single analytic function is equal to ca i- c$ where co and cr 
are vectors to be determined. 

According to the condition of the problem we have 

where p is an unknown quantity. Using (2.7) and (2.5) we find 
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co = rc-li’ [X- (O)J-lx, Cl = 4n-‘!a [X- (I)]-$ - cg (2.8) 

The solution of the functional equation (2.1) can be written in the form 

cp- (P) = (P + 1)-l K+ W’X- (p)(co + clp) (P E D-) (2.3) 

‘p+ (P) = P-‘K+ (P)X’ (P)(Gl + W) (P E D+) (2.10) 

The unknown p can be determined from the condition (2.2) using of (2.10) 

3. 5 
edge. 
edge. 

p = F[4(chs + shs)]-L{(aA)-l [(a2 - 1)sinaY + 

2 (a2 cos2 + + sin2 G) X] - 8F-’ tg ash s M} 

(2.11) 

tress intensity coefficients at the crack 
Asymptotics for the stresses near the wedge 

From (2.9) follows that 

rp- (P) - QcNiP (P -+ m) (3.1) 

From (3.1) and (2.6) we obtain the following formula for the stress intensity coeffici- 
ents: 

u = (2 / n)“zQ (4 IX- (l)l-lp - IX- (O)l-‘x} 

where the matrices Q, [X- (0)1-l, [X- (1)1-l are given by the formulas (2.4) 
and the quantity p by (2.11). Setting a = rr yields a known result [4,5]. 

Let us inspect the behavior of the stresses oa (r, 0) and ~,a (r, 0) as r + 0. 
For p E D+, Rep > - h, the analytic function cp- (p) is given by the form- 

Ula 

cp- (~1 = (P -I- I)-' W- W~-'G-l (P)X+ (P) (co + WI 

G-’ (p) = 2 cos psc - h,(P) - h(P) 
si$p(n. +a)-p2sin2a 

i2@> he(p) II 
h1,2 (p) = p sin a (sin pn cos a.f p sin a cos pn) T 

sin pa sin p (n + a) 
i,,, (p) = p (p F 1) sin pn sin2 a 

and applying the inversion formula we obtain 

(2xri)+l J (p + I)-‘[K- (p)]-’ G-’ (p) x 
Y 

(3.2) 

X+ (p)(c0 + w) r-Pdp 

where y denotes a straight line parallel to the imaginary axis and lying in the strip 
--3L1<Rep<0. 

Using the theorem of residues, we obtain the following asymptotics (r + 0) 
from (3.2): 
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Hj = 
hl (A;) - is @.jj 
it (Ai) - .hz (hj) 

(2a*-n<a<n) 

When 0 < a < 2ct* - n, then the term corr~~n~ng to j = 2 vanishes. 

The author thanks G. P. Cherepanov for the interest shown to the work. 
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